Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

$[Tris(2-aminoethyl)amine-\kappa^4N]$ chloro(dimethyl sulfoxide-O)cobalt(III) diperchlorate

Hu, Feng, Cai and Ji

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

electronic papers

Acta Crystallographica Section C **Crystal Structure** Communications ISSN 0108-2701

[Tris(2-aminoethyl)amine- $\kappa^4 N$]chloro(dimethyl sulfoxide-O) cobalt(III) diperchlorate

Xiaopeng Hu,^a Xiaolong Feng,^b Jiwen Cai^{b*} and Liangnian Jia

^aDepartment of Chemistry, Zhongshan University, Guangzhou 510275, People's Republic of China, and ^bInstrumentation Analysis and Research Center, Zhongshan University, Guangzhou 510275, People's Republic of China Correspondence e-mail: puscjw@zsu.edu.cn

Received 15 June 2000 Accepted 9 August 2000

Data validation number: IUC0000214

The title compound, $[CoCl(tren)(dmso)](ClO_4)_2$ [tren is tris- $(2-aminoethyl)amine, C_6H_{18}N_4$; dmso is dimethyl sulfoxide, C₂H₆OS], is the first crystal structure reported with dmso coordinated to Co^{III}. It crystallizes with two independent molecules in the asymmetric unit. A localized non-crystallographic inversion centre is observed between the two cations.

Comment

The title compound was obtained during the hydrolysis study of alanine methyl ester catalyzed by [Co(tren)Cl₂]Cl (Kimura et al., 1970). Although crystal structures of several Co^{II}-dmso complexes have been determined (Kinoshita & Ouchi, 1988; Amari et al., 1994; Lu et al., 1998; Baidina et al., 1991; Ciccarese et al., 1993; Tkachev et al., 1994), the title compound, (I), represents the first crystal structure with dmso coordinated

to Co^{III}. It is noteworthy that in all of these Co^{II}-dmso complexes, the dmso ligands always lie trans to each other. However, in the title complex, the dmso ligand is trans to an N atom of the tren ligand. There are two independent molecules in the asymmetric unit. The coordination geometries of these two molecules are very similar. Cobalt(III) is six-coordinate with four N atoms from tren, one chloro, and one O atom from dmso. Chloro is in a trans position to the tertiary N atom of tren, with Co-Cl = 2.2500 (9) Å for Co1 and 2.2422 (9) Å for

Co2. The distances between Co and the O atom of dmso are 1.952 (2) and 1.949 (2) Å in the two molecules. Both cations possess the same, and only, intramolecular hydrogen-bonding interaction between the amine proton and sulfur, N2-H2D···S1 and N7-H7D···S2. All the other amine protons are involved in extensive intermolecular hydrogen-bonding interactions with perchlorate O atoms.

Experimental

[Co(tren)Cl₂]Cl (0.5 g, 1.60 mmol) in water was mixed with alanine methyl ester in DMSO (15 ml). Diethylamine (0.8 ml) was added to the resulting solution and kept at 333 K for 30 min. The precipitate was collected and redissolved in water to which extra NaClO₄ had been added. Suitable crystals were obtained after a few days.

Crystal data

$CoCl(C_6H_{18}N_4)(C_2H_6OS)](ClO_4)_2$	$D_x = 1.739 \text{ Mg m}^{-3}$
$M_r = 517.65$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 8192
a = 20.0177 (10) Å	reflections
p = 15.7193 (8) Å	$\theta = 1.66-27.02^{\circ}$
x = 12.9074 (7) Å	$\mu = 1.427 \text{ mm}^{-1}$
$\beta = 103.235 (1)^{\circ}$	T = 293 (2) K
$V = 3953.6 (4) \text{ Å}^3$	Column, red
Z = 8	$0.3 \times 0.2 \times 0.15 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer	8616 independent reflections 6484 reflections with $I > 2\sigma(I)$

 $-25 \rightarrow 25$

DIUKEI SWART CCD area-uciccioi	ooro muepenu
diffractometer	6484 reflection
φ and ω scans	$R_{\rm int} = 0.025$
Absorption correction: empirical	$\theta_{\rm max} = 27.02^{\circ}$
(Blessing, 1995)	$h = -25 \rightarrow 25$
$T_{\min} = 0.674, \ T_{\max} = 0.814$	$k = -15 \rightarrow 20$
23 159 measured reflections	$l = -16 \rightarrow 15$

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0977P)^2]$
R(F) = 0.044	+ 1.2289P]
$wR(F^2) = 0.130$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.036	$(\Delta/\sigma)_{\rm max} = 0.002$
8616 reflections	$\Delta \rho_{\rm max} = 0.99 \ {\rm e} \ {\rm \AA}^{-3}$
466 parameters	$\Delta \rho_{\rm min} = -0.84 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H2C\cdotsO10^{i}$	0.90	2.13	3.009 (5)	167
$N2-H2D\cdots O5^{ii}$	0.90	2.24	3.021 (4)	145
$N2-H2D\cdots S1$	0.90	2.85	3.379 (3)	119
$N3-H3C\cdots O9^{iii}$	0.90	2.65	3.201 (5)	121
$N3-H3D\cdots Cl1^{iv}$	0.90	2.51	3.399 (3)	169
N4-H4C···O3	0.90	2.65	3.314 (5)	131
$N4-H4C\cdots Cl1^{iv}$	0.90	2.70	3.462 (3)	143
$N4 - H4D \cdots O9^{i}$	0.90	2.18	3.051 (5)	162
$N6-H6C\cdots Cl2^{v}$	0.90	2.53	3.421 (3)	168
N6-H6 D ···O17 A ^{vi}	0.90	2.44	3.040 (9)	124
$N7 - H7D \cdots O6$	0.90	2.21	3.052 (5)	156
$N7 - H7D \cdot \cdot \cdot S2$	0.90	2.87	3.402 (3)	120
$N7 - H7E \cdots O18A^{iii}$	0.90	2.07	2.932 (10)	161
$N8-H8D\cdots O17B^{iii}$	0.90	2.17	2.940 (7)	144
N8-H8 D ···O17 B ⁱⁱⁱ	0.90	2.17	2.940 (7)	144
$N8-H8D\cdots O17A^{iii}$	0.90	2.31	3.178 (9)	163
$N8-H8D\cdots O18A^{iii}$	0.90	2.61	3.334 (10)	139
$N8-H8E\cdotsO11^{vii}$	0.90	2.47	3.181 (5)	136
$N8 - H8E \cdots Cl2^{v}$	0.90	2.73	3.472 (3)	141

Symmetry codes: (i) $x, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) $1 - x, y - \frac{1}{2}, \frac{3}{2} - z$; (iii) $1 - x, \frac{1}{2} + y, \frac{3}{2} - z$; (iv) 1 - x, 1 - y, 2 - z; (v) 2 - x, 1 - y, 2 - z; (vi) $1 + x, \frac{1}{2} - y, \frac{1}{2} + z$; (vii) 1 + x, y, z.

All H atoms were placed in idealized positions and refined as riding atoms with relative isotropic displacement parameters. The O atoms of the two perchlorate anions are disordered.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SMART* (Bruker, 1998); data reduction: *SAINT-Plus* (Bruker, 1999); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXTL* (Bruker, 1998).

This work is supported by the National Nature Science Foundation of China (No. 29801006).

References

- Amari, C., Pelizzi, C., Pelizzi, G., Predieri, G. & Sartori, G. (1994). Inorg. Chim. Acta. 223, 97–102.
- Baidina, I. A., Imanakunov, B. I., Toktomatov, T. A. & Stabnikov, P. A. (1991). *Zh. Neorg. Khim.* 36, 775–781.
- Blessing, R. (1995). Acta Cryst. A51, 33-38.
- Bruker (1998). SMART (Version 5.0) and SHELXTL (Version 5.1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT-Plus. Version 6.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ciccarese, A., Clemente, D. A., Marzotto, A. & Valle, G. (1993). J. Crystallogr. Spectrosc. Res. 23, 223–229.
- Lu, J., Yu, C., Niu, T., Paliwala, T., Crisci, G., Somosa, F. & Jacobson, A. J. (1998). Inorg. Chem. 37, 4637–4640.
- Kimura, E., Young, S. & Collman, J. P. (1970). Inorg. Chem. 9, 1183-1191.
- Kinoshita, H. & Ouchi, A. (1988). Bull. Chem. Soc. Jpn, 61, 1169-1174.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tkachev, V. V., Lavrent'eva, E. A., Rosschupkina, O. S., Lavrent'ev, I. P. & Atovmyan, L. O. (1994). Koord. Khim. 20, 674–676.